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Dynamical bimodality in equilibrium monostable systems
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General features of the stochastic dynamics of classical systems approaching a thermodynamic equilibrium
Gibbs state are studied via the numerical analysis of time-dependent solutions of the Fokker-Planck equation
for an overdamped particle in various monostable potentials. A large class of initial states can dynamically
bifurcate during its time evolution into bimodal transient states, which in turn wear off when approaching the
long-time regime. Suitable quantifiers characterizing this transient dynamical bimodality, such as its lifetime,
the positions of maxima, and the time-dependent well depth of the probability distribution, are analyzed. Some
potential applications are pointed out that make use of this interesting principle which is based on an appro-

priately chosen initial preparation procedure.
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I. INTRODUCTION

Multistable systems frequently occur in nature and there-
fore are of eminent importance for various disciplines of sci-
ence. Closely related to the phenomenon of multistability are
problems such as the stability of states, activation processes,
phase transitions, exit times of locally stable states, escape
over energy barriers, etc. [1,2]. Bistable systems provide the
simplest but yet nontrivial and important case of multistable
systems. Examples of such systems can be found in physics,
chemistry, and biology [1-4]. They typically describe quite
different physical systems in regard to their explicit dynam-
ics, nevertheless, these multistable systems exhibit a com-
mon universal behavior. This universality is fundamental.
Often, bistability is a feature of steady states suddenly show-
ing up upon a change of a control parameter. At a critical
value of the control parameter the number of stable
asymptotic states increases from one to two. Optical bistabil-
ity [5,6] is just one of many examples illustrating such a
bifurcation of steady states. Phase transitions provide a
whole variety of other examples. We also note that
asymptotic states that display a persistent dynamics such as
stable limit cycle dynamics or chaotic attractors may coexist.
Here all types of combinations between coexisting stationary
metastable states and dynamic metastable states may occur.

The presence of noise in a deterministically bistable sys-
tem tends to smear out the sharp deterministically localized
states and to let the system explore larger regions of its state
space. If the noise though is small enough, the system will
stay most of the time in either of the two stable states, and
only occasionally trigger a transition between these states. As
a consequence, the probability density then displays a bimo-
dal structure with pronounced maxima at the deterministic
states. On the other hand, bimodality of a system’s probabil-
ity density does not necessarily imply its bistability. An ini-
tially prepared double humped probability density of a
monostable system will survive for some time until it even-
tually disappears. Also the probability density of a system
that linearly oscillates back and forth displays maxima at the
two points of return. In this paper, we demonstrate that bi-
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modality can result in a monostable system from an unimo-
dal, i.e., one humped probability density as a transient effect.

The layout of the paper is as follows: In Sec. II, we for-
mulate the problem in terms of a Brownian particle moving
in a one-dimensional potential. Examples of specific models
are presented in Sec. III. In Sec. IV we analyze in detail
transient bimodality. Section V contains conclusions. In the
Appendix, we derive an equation for the mean time of first
exit, the behavior of which explains bimodality in
monostable systems.

II. BROWNIAN PARTICLE IN A POTENTIAL

A broad class of systems in contact with a thermostat can
be modeled by a one-dimensional Langevin equation de-
scribing the position x of an overdamped Brownian particle
randomly moving in a potential V(x) [1,7]. It reads in appro-
priate chosen dimensionless units,

¥=—V'(x) +\2DT(z), (1)

where the dot denotes the derivative with respect to time ¢
and the prime is the derivative with respect to the coordinate
x of the Brownian particle. The random force I'(r) describes
thermal noise. It is modeled by zero-mean Gaussian delta-
correlated white noise of unit intensity, i.e., {I'(£)I"(s))= (¢
—s). The parameter D=D(T) «T is proportional to tempera-
ture T of the thermostat. The Langevin equation (1) defines a
Markov diffusion process. The corresponding probability
density p(x,z) obeys the Fokker-Planck equation [7,8]

J J s
(%p(x,t) =57 (W)pe.1) + D= 5p(x.1) (2)
with an arbitrary initial condition p(x,0). All potentials that
we will consider here grow to infinity for |x|—c°. In these
cases, natural boundary conditions apply, i.e., the probability
density approaches zero outside of some central region, i.e.,
plx,0)—0 as |x| —o.
The stationary probability density p,(x) is then uniquely
approached in the limit of long times; it assumes the form of
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a Gibbs state describing thermal equilibrium at the thermo-
stat temperature T, namely,

Ppsi(x) = exp[- V(x)/D]. (3)

For a potential having two minima and a maximum in be-
tween, the deterministic dynamics for the Brownian particle
described by Eq. (1) is, in the limit 7— 0, bistable with the
stable states located at the positions of the potential minima.
Clearly, in the presence of noise, the corresponding station-
ary probability density becomes bimodal. Accordingly, a po-
tential with a single minimum is monostable and the corre-
sponding probability density is unimodal. In this paper we
will describe a generic mechanism that produces a dynamical
bimodality which evolves from a unimodal initial state. The
time dependent probability density p(x,7) can then be ex-
pressed in terms of a nonequilibrium potential W(x,¢), read-

ing
px,1) o exp[- W(x,0)], (4)

which changes with time as a function of x from a single
minimum to one possessing two minima, and finally ap-
proaches asymptotically its equilibrium form given by
V(x)/D exhibiting a single minimum.

III. MODEL SYSTEMS

We consider a reflection-symmetric potential V(x) with a
single minimum at x=0. Its leading contribution near the
origin is parabolic with curvature €>0. The potential can be
presented as

Vix) = §x2 + h(x), (5)

where h(x) describes the deviation from the harmonic poten-
tial with 2(0)=h"(0)=A"(0)=0. Due to the symmetry of the
potential its leading contribution for small values of x is
proportional to x*; i.e.,

h(x)=ax*+ .-+ for x| <1, (6)

where « denotes a positive constant.

There are several important physical examples for such
symmetric, monostable potentials. Below, we present three
of them, which will be discussed in greater detail with this
work.

A. Ginzburg-Landau model

The first example is the celebrated zero-dimensional
Ginzburg-Landau (GL) model [9,10] displaying a second-
order phase transition. In this case, higher-order terms in Eq.
(6) are neglected. The parameter € measures the relative dis-
tance of temperature from its critical value T, i.e., exT/T,
—1. In the high-symmetry phase (e=0), which will be con-
sidered here, the potential V(x) is monostable; in contrast,
when the spontaneous symmetry breaking takes place below
T., the potential V(x) assumes a bistable form.

B. Josephson junction

The second example presents the case of the resistively
shunted junction model of a trapped magnetic flux y in a
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superconducting ring interrupted by a Josephson junction
(3J) [11]. In this case the potential reads

1
V(y) = E(y - ¢exz)2 -Ey COS(ZTW), (7)

where ¢,,, is the external magnetic flux and E, denotes the
Josephson coupling energy which depends on the junction
properties. In the following we consider only half integer
values of ¢,,, and introduce x=y— ¢,,,. The use of the pa-
rametrization

Ey=(1 - e)/4? (8)

transforms V(y) in Eq. (7) to the form given by Egs. (5) and
(6), with

a=1(1-€)l6. )

It can readily be checked that V(x) is monostable (bistable)
for e=0 (e<0), in analogy to the case of the GL model.

C. Mesoscopic rings (MR)

The third physical situation addresses a model of noise
assisted persistent currents in mesoscopic systems of cylin-
drical symmetry assuming the form of rings, cylinders, or
tori [12,13]. The magnetic flux x dynamics is governed by a
potential of the form

o AT

1
V(x)==x>+1
(=5 0= 2mm

X{p cos[2mnx] + (1 — p)cos[2mn(x + 1/2)]},
(10)

where the prefactor [, is the maximal value of the persistent
current at temperature 7=0. It depends on the electronic and
geometric properties of the system (e.g., on the circumfer-
ence of the ring). The quantity p € [0,1] denotes the prob-
ability of a single channel with an even number of electrons
within a multichannel ring. The harmonic weights A, (7T) de-
pend on temperature T via the ratio 7/T", wherein T" denotes
the characteristic temperature determined from the relation
kgT =Ap/27* and Ay is the energy gap at the Fermi level. In
this case, the dimensionless noise intensity D= 60T/T*,
where 8,=kpT"/2€,. The parameter ¢, is the magnetic en-
ergy of the flux quantum. The explicit form of A,(7) is given,
e.g., in Ref. [14]. Because of their dependence on tempera-
ture 7, also the potential V(x) depends explicitly on tempera-
ture 7. Expanding the cosine functions into a Taylor series,
one can show that for small x the potential corresponding to
Eq. (10) takes the form (5) with the expansion coefficients €
and « expressed as infinite series in terms of the weighting
factors A,(T). At high temperatures the potential is
monostable and changes to a bistable potential upon lower-
ing temperatures or by raising /.

On one hand, in the vicinity of x=0, all the above ex-
amples take on a common form of the Ginzburg-Landau
model, which is an archetypical model of critical behavior.
On the other hand, both the JJ and MR models behave dif-
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FIG. 1. (Color online) Time evolution of p(x,?) in the Ginzburg-
Landau model with D=0.1, =0, and @=1 from the initial Gaussian
distribution p(x,0)=1/v2mexp(—x2/2). The inset depicts the curve
where the second-order spatial derivative of the probability density
p"(0,1) vanishes on the (€,7) plane. Dynamical bimodality occurs
below this curve where p”(0,1) >0.

ferently for large values of x compared to the GL model. In
the case of the GL model, V(x) depends on temperature and
grows as x* for |x| —oe. In the case of the JJ model, V(x) is
temperature independent and V(x)/x? is bounded. The case
of the MR is intermediate in the sense that V(x) is tempera-
ture dependent and V(x)/x? remains finite for arbitrary large
x. We systematically restrict the following discussion to the
regime (€=0) only when the stationary state is monostable.

IV. DYNAMICAL BIMODALITY

We investigated the dynamics of the above-described sys-
tems by numerical solutions of the Fokker-Planck equations
with the potentials (5)—(10) in the monostable regime with an
initially unimodal symmetric probability density which is
broader than the respective equilibrium distribution, i.e., its
initial variance exceeds the equilibrium variance. In this case
the time-dependent probability density evolves a bimodal

=4
e
—
)
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character as a function of time and remains in this bimodal
state for some time span 7, until it eventually approaches its
unique, unimodal equilibrium shape (3), see Fig. 1.

Our main goal is to characterize and understand this in-
triguing transient bimodality. To this end, we introduce vari-
ous quantifiers of this phenomenon: (i) The positions =*x,,(t)
of minima of the time-dependent potential W(x,7) in Eq. (4)
representing the most probable values of the symmetric sto-
chastic process x(7) in Eq. (1), i.e., these positions corre-
spond to maxima of the probability density p(x,r) with the
minimum of the bimodal probability being located at x=0;
(ii) the barrier height AW (1) =W(x=0,1)-W(x=x,,t) of the
potential and, directly related, the relative depth d(z)
=[p(xp,1)/p(0,1)]—1 of the well of the probability density;
(iii) the lifetime 7,=1,—1, of the bimodal state, which elapses
from the onset of the bimodality at #; until its disappearance
at 1,. The bimodality sets in when the probability density at
x=0 changes from a maximum to a minimum and it disap-
pears again when the minimum again turns into a maximum,
ie., #p(0,1;,)/3x*=0 with #p(0,1)/ x> >0 for 1} <t<t,. It
can equivalently be characterized by the conditions d(z) >0
or x(t)#0. The bimodality is more pronounced are the
larger the values of the so introduced three quantifiers.

A. Lifetime of bimodality

In Figs. 2 and 3 we present the dependence of x,,() and
d(r) on the criticality parameter € for the three above men-
tioned systems, GL, JJ, and MR. As a function of evolution
time 7, the position of the maxima x,,(f) and the relative
depth d(z) exhibit a bell-shaped form, i.e., they remain zero
until a time ¢;, then grow rapidly until they reach a maxi-
mum, and finally decrease until they vanish at #,. The dy-
namical bimodality occurs for all three potentials, GL, JJ,
and MR, and therefore this phenomenon happens to be quite
independent of the asymptotic properties of V(x) for large x.
The bimodality becomes more pronounced for smaller values
of €, i.e., when the quartic contribution dominates over the

d(t)
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FIG. 2. Left panels: Time evo-
lution of the most probable posi-
tion xu,(r). Right panels: Time
evolution of the bimodality depth
d(t). The upper panels show re-
sults obtained for the Ginzburg-
Landau model with a=1. The
curves from top to bottom corre-

o
i

spond to €=0,1,2,...,8, respec-
. tively, and the noise intensity D

Xp(t)

o
S

1 =0.1. The lower panels show re-
sults obtained for the Josephson-
junction model. The curves from
top to bottom correspond to €
. =0,0.1,...,0.8 and D=0.02. In
1 this case, the values of « are given
] by Eq. (9). The initial distribution
is the same as in Fig. 1.
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Xm(t)

FIG. 3. Results for the mesos-
copic rings with [y=1 and D
=0.017. Upper panels: Time evo-
iy lution of x,,(7) (left) and the bimo-
] dality depth d(z) (right). The sys-
1 tem evolves from p(x,0)=p(x)
1 for the initial temperature 7=T7; to

: the final stationary state p,(x)
with temperature T=T,=1.7. The

curves from bottom to top are ob-
1 tained for the initial temperature
| T,=5, 7, 9, 11, 13, respectively.
Lower panels: Left panel shows
the bistability diagram for the
equilibrium state. The right panel
s shows the region in the (7},7)
P (O,t)<0 1 plane, where the dynamical bimo-
. : dality occurs, p”(0,7)>0.

parabolic part of the potential already for rather small x
value. It is remarkable that the lifetime 7, increases with
decreasing € and diverges at the critical point €=0. On the
other hand, if € is too large, the bimodality does not occur at
all. This is illustrated in the inset in Fig. 1, which presents a
“phase diagram” in the (e,) plane. The solid line separates
the regions where the second derivative ¢*p(0,)/dx* of the
probability density changes sign constituting the boundary
between bimodal [#p(0,£)/dx*>0] and unimodal
[#*p(0,1)/ x> < 0] probability densities. While the lifetime 7,
can vary from zero to infinity, the other two quantities x,,(z)
and d(t) remain bounded for all evolution times 7 and param-
eter values. In particular, they converge to a finite value if
e—0.

B. Role of initial states

The onset of the dynamical bimodality depends also on
the choice of the initial distribution. As emphasized already
above, the initial distribution p(x,7=0) should be broader
than the equilibrium distribution pg(x). If the initial

2 t 3

=exp[-x2/20%]/\2ma?, the bimodality occurs only if p(x
=0,r=0)/p,(0) <1, see Figs. 1 and 2. It is more pronounced
for lower values of this ratio, i.e., for broader initial distri-
butions with larger values of the variance o”. Another class
of initial distributions is provided by thermal equilibrium
states as in Eq. (3), but being prepared at higher tempera-
tures. In the case of temperature-independent potentials, a
broad initial distribution can be achieved by heating up the
system to a sufficiently high temperature. Upon a sudden
quenching [10], p(x,7) evolves from a broader probability
distribution to a narrower one (see the right panel of Fig. 4).
For temperature-dependent potentials, the variance is not
necessarily a monotonic function of temperature and the
above statement may not hold true. However, we have found
that also in this case the bimodality can be induced by sud-
den cooling provided that the ratio €/« in the potentials (5)
and (6) is small enough. Such a situation is depicted in Fig.
3 and in the left panel of Fig. 4.

C. Origin of bimodality

In order to unravel the mechanism that generates a bimo-

state is Gaussian with the distribution p(x,=0) dal from a unimodal probability density in a monostable sys-
0.25 T T T T 1.8 : T T T
=1 =1
I 1
0.1
A e e
OO t OO t 4

FIG. 4. Time evolution of the bimodality depth originating from a sudden drop of temperature. The system evolves from p(x,0)

=p,,(x) for the initial temperature T=T; to the final stationary state p(x) with temperature T'= Ty. Assumed value of D=0.1T. The left panel
shows results obtained for the Ginzburg-Landau model with 7;=10, T/=1.3, and a=0.1. Here, the curves from top to bottom correspond to
e=¢€)(T—1) with €=0.02,0.04,...,0.14. The right panel shows results obtained for the Josephson junction model with 7;=10 and T,
=0.1. The curves from the top to the bottom correspond to €=0,0.1,...,0.8.
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FIG. 5. (Color online) Mean first time (A2) to reach the point u
from the starting point xo=-10 for a particle governed by the
Langevin equation (1) with the potential V(x)=x*/4 and different
noise intensity D=1, 0.1, 0.01 from bottom to top.

tem we consider a single random trajectory in the archetypi-
cal potential described by Egs. (5) and (6). As an initial
condition for the considered trajectory we choose a point that
is remote from the origin. There, the large deterministic force
resulting from the quartic part of the potential does dominate
both the random and the linear contributions to the force.
Consequently, the trajectory will display a fast and almost
deterministic motion until a neighborhood of the origin is
reached where either the linear or the random force domi-
nates. From there on, the final approach to the origin is much
slower than the initial deterministic motion. Therefore in an
ensemble of particles, an accumulation of trajectories will
result just in the region where the deterministic contribution
of the quartic potential loses its dominance. This qualitative
mechanical picture also allows to understand the dependence
of the effect on the initial distribution: Only from a suffi-
ciently broad distribution the fraction of remote particles is
large enough in order to cause a “congested traffic situation.”

A quantitative corroboration of this qualitative picture can
be obtained by considering the time that it takes to reach a
final destination x=u for the first time from an initial point
x=xq. The mean value du):?jro(xoﬂu) of this “first exit
time” is the solution of the inhomogeneous backward equa-
tion:

2

i

{—V’(u)%+Dd }7(»1):1 (11)

with homogeneous “initial conditions” reading

m(xg) = 0,

For a derivation of this equation we refer to the Appendix. In
Fig. 5, we depict the mean time 7(u)=7{(x,— u) as a function
of the exit point u#. For the remote starting point x,=—10 the
first exit time only slowly increases with increasing exit
point u up to approximately u=-1. From there on, 7(u)
steeply grows when u approaches the origin. This confirms

7 (x0) = 0. (12)
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the qualitative picture that the motion far away from the
origin is fast, while it is slow when being close to the origin
x=0. Moreover, Fig. 5 indicates that the first fast part of the
motion is almost independent of noise strength D, i.e., that
the random force has little influence in this region.

V. REFLECTIONS, APPLICATIONS, AND SUMMARY

Dynamic bimodality is a general feature in monostable
systems with an almost flat potential in a neighborhood of
the stable state and a steep increase beyond this neighbor-
hood. In the distribution of initial states remote regions be-
yond the flat neighborhood must have sufficient weight com-
pared to the equilibrium distribution of the system. In the
prior literature [16], the so-termed phenomenon of the “tran-
sient bimodality” has been studied in asymmetric, bistable
systems. This latter phenomenon occurs above (or below) an
up-switching threshold as a consequence of diffusion and the
asymmetry of the potential and is closely related to the phe-
nomenon of critical slowing down. Initially, the system starts
from the point x, far from the stationary point, i.e., p(x,t
=0)=8(x—x,). Next, the density p(x,t) broadens and devel-
ops a long tail in the direction of the potential well giving
rise to a second peak, corresponding to the stationary stable
state. Our case, in contrast, refers to symmetric potentials and
symmetric, broadened initial distributions with a probability
maximum assumed at the stationary stable state.

There are various potential applications of the effect of
dynamic bistability. Depending on the physical interpretation
of the variable x the most probable values of magnetic fluxes,
currents, or magnetization can take on nonzero values also
above the critical temperature. Put differently, one can obtain
transient ordered phases manifested, e.g., in short-living
magnetic moments in Josephson junctions or currents in me-
soscopic rings whenever the initial preparation scheme is
chosen with a sufficient broadness. These ordered transient
phases could be used for generating magnetic or electric im-
pulses of a certain lifetime which can be “programmed” by a
proper choice of initial conditions, or by a tuning of param-
eters in the system.

In summary, some interesting, rather general features of
the dynamics of systems approaching the thermodynamic
equilibrium Gibbs state have been studied by a numerical
analysis of time-dependent solutions of the corresponding
Fokker-Planck equation. For a wide class of models and a
wide class of initial states, the initially and finally
monostable system can exhibit bimodal transient properties
during a finite time interval. We expect these phenomena to
appear in systems above a second-order phase transition.
However, it is also possible in systems which do not exhibit
any critical behavior. This study is therefore of a relevance to
a broad class of systems modeling a rich diversity of pro-
cesses in nature. We hope that these transient bimodality
phenomena might find their way into applications like the
generation and the control of short magnetic or electric im-
pulses. Within the bimodality regime, nonzero fluxes and
currents can emerge: they survive for some time and finally
die away. If the survival time is made sufficiently long, such
intriguing bimodal, transient fluxes and currents can be ob-
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served in such systems as Josephson junctions, mesoscopic
cylinders, or magnetic bistable nanostructures like nanodots
and nanorings [17].
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APPENDIX

For a one dimensional Markov process x(¢), which is de-
fined by the Langevin equation (1) the mean first time
T.(xo—u) to cross the boundary point x=u of the interval
[a,u] is intimately related to the inverse of an escape rate
[1,15]. After having started out at x, € [a,u] it is obtained by
use of a reflecting boundary set at x=a and an absorbing
boundary at x=u in terms of a closed form expression con-
sisting of two quadratures [see Eq. (7.8) in Ref. [1]],

[ y
T (xg— u) = —J a’yev(y)/Df dze VD, (A1)
D X0 a

Given this expression one immediately obtains the mean
time 7(u) it takes to reach the boundary u of the interval
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[a,u] after the process has started out at the other boundary
point a, namely,

1 (" Y
) =T (a—u)= l_)f dyev(y)’Df dze V9P (A2)

a a

Differentiating m(u) twice with respect to u one finds that this
time of first exit satisfies the inhomogeneous backward equa-
tion

L'r(u)=1 (A3)
with the homogeneous “initial conditions”
ma)=0, 7 (a)=0. (A4)

Here L* denotes the backward operator of the considered
process

d d
L'=—V'(W)—+D—. AS
() +D- 5 (AS)
Notably, this equation differs from the well known
Pontryagin-Andronov-Vitt relation [1] for the mean first pas-
sage time 7,(x—u) as a function of x by the sign of the

inhomogeneity and the nature of the boundary conditions.
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